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SUMMARY /_fﬂ{ig D

A general theory of elastic post-buckling, applicable to a wide class
of structural eigenvalue problems, is developed in generalized coordinates.
Attention is restricted to the initial post-buckling path of the structural
system on a plot of the load against the critical principal coordinate, and
exact first-order solutions for the path are presented. These solutions
are compared with the predictions of the non-linear Rayleigh-Ritz analysis
in which the linear buckling mode is employed as the assumed form, and

theorems concerning the results of this analysis are established.

It is seen that the Rayleigh-Ritz analysis will always yield the
correct initial slope for the post-buckling path, and that when this slope
is zero the analysis will supply an upper bound for the initial curvature.
For symmetric systems it is further shown that the Rayleigh-Ritz analysis
will always yield the correct initial curvature, while if the curvature

is zero the analysis will supply an upper bound for the fourth derivative.
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I. INTRODUCTION

Experience with thin shell structures has indicated (1) that on
encountering any new eigenvalue buckling problem in this field, an attempt
must be made to assess the post-buckling characteristics of the structural
system. If the load-carrying capacity of the idealized structure is
observed to fall as the buckling deformation develops, the lowest eigen-
value critical load may represent a poor and unsafe estimate of the

stability limit of a practical imperfect structure.

A quick and reliable procedure for examining the initial post-
buckling behavior of a structure is clearly required, and one such pro=-
cedure has been developed by Koiter (2)(3). This method makes use of
the presumably known linear buckling mode, and involves the solution of
a set of linear equations to determine the small initial changes in the

buckled form.

A simpler procedure, which however yields less detailed information
about the initial post-buckling path, is to use the known linear buckling
mode as the assumed form in a non-linear Rayleigh-Ritz analysis. Theorems
concerning the results of this procedure are established in the present

paper.

A general theory of elastic post-buckling, applicable to a wide
class of structural eigenvalue problems is first developed in generalized
coordinates, following the lines of an earlier study of elastic instability
(k). First-order solutions are established for the initial post-buckling
path of the structural system, and these are subsequently compared with

the results of the non-linear Rayleigh-Ritz procedure.

II. GENERAL REMARKS

The sensitivity of the stability limit of an eigenvalue buckling
system to initial perturbations is largely determined by the post-buckling
characteristics of the idealized perfect system. Thus if no adjacent

post-buckling equilibrium states exist at loads less than the critical
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load, initial imperfections will usually be insignificant. If on the
other hand a post-buckling path emerging from the first branching point
yields adjacent equilibrium states at loads less than the critical locad,
initial imperfections can be expected to yield a marked lowering of the
stability limit. The rate at which the load-carrying capacity of the
structure decreases along this path will moreover be significant in

determining the precise sensitivity of the stability limit.

It is clear from the above remarks that the initial post-buckling
behavior of a structure is of considerable practical importance. If,
moreover, the first critical load is discreet, it is apparent that the
first-order solution of the corresponding post-buckling path will be of
primary interest. Considering the path on a plot of the load against
the critical mode amplitude for example, interest will focus in the first
instance on the initial slope, while if the slope is seen to be zero,

interest wil} be transferred to the initial curvature.

The theorems of the present paper are restricted to eigenvalue
problems exhibiting discreet critical loads, and in the light of the
preceding remarks are concerned with the first-order solutions of the

initial post-buckling path.

Many structural systems are designed with a high degree of symmetry,
and, if the symmetry is preserved by an appropriate choice of coordinates,
the post-buckling paths of these systems will consequently be symmetric
about the load axis. Two theorems applicable exclusively to such symmetric
systems are presented, the value of these theorems lying in the fact that
the symmetry of a system can usually be established by a preliminary

inspection.

IIT. STRUCTURAL SYSTEM

The general analysis and theorems of the paper are concerned with
the post-buckling behavior of any elastic structure that yields a well-

behaved eigenvalue buckling problem under the influence of a single
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generalized conservative load. An energy formulation capable of describing

any such structural system is developed in the present section.

It is assumed that the deformations of the elastic structure can be
analyzed into mode-forms, the amplitudes of which will supply a set of
generalized coordinates for the structure. It is further assumed that the
behavior of the structure can be described satisfactorily by the use of a

large but finite number of coordinates.

Considering then a finite set of n generalized coordinates, a
the strain energy of the structure can be represented by a single-valued

function, U(qi), of these coordinates.

Introducing now a generalized displacement represented by the single-
valued function E(qi), we shall suppose the structure to be loaded by a
dead generalized conservative force of magnitude P acting on this dis-
placement, as shown in the schematic diagram of Figure 1. The total poten-
tial energy of the structural system can thus be written as V = U(qi) -
PE(qi).

We suppose further that the structural system yields a well-behaved
eigenvalue problem with the trivial undeformed equilibrium state,

a; = E(0) = 0 for all values of P. Then we can expand the functions
U(qi) and E(qi) as power or Taylor series in the generalized coordinates

as follows,

1 1
u(ay) oMY Y T Mg Y Yy R T
(1)
1 1
E(q,) 58539 G T B G 9y gt

Here the dummy suffix convention is employed with all summations ranging
from 1 to n: the coefficients are constants for a given system, and
the sets of coefficients are assumed to be symmetric in the sense that
nijk = nkji = njik ete.

The quadratic form of the strain energy being positive definite, the
quadratic forms of U(qi) and E(qi) can be simultaneously diagonalized

by means of a real non-singular linear transformation of coordinates. If

the new (principal) coordinates are ui, we then have
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where the positive-definite quadratic form has been normalized. The new

coefficients, Gi’ Nijk’ etc. are functions of the previous coefficients,

mij’ gij’ etc.

The total potential energy of the system can now be written as

v = v(Pu,) = U(u,) - PE(u,)

Thus, focusing attention on the trivial loaded equilibrium state defined

by P = Po’ qi = ui = 0, and introducing the new symbols,

P = P - PO )
C. =1-P G, »
1 (o] 1
Dle = Nijk - P HiJk s ete. ,

we can finally write the total potential energy function in the form,

1 2 1
V = ( 3 Ci ui + I Dijk u:.L uj uk + ...) ( )
3

1 2 1
- — + e
p(zGiui+3Hijkuiuj”k )

Equilibrium states of the system are defined by the n equations

dV/du, = 0, and the critical loads are given by the n equations,

i
C.=1-P G. =0
i o 1

That is to say, the critical load associated with the principal coordinate
u; 1is given by Pi = l/Gi-
We shall assume that the critical loads are discreet, so that

P, £ Pj for i # j, and we shall restrict attention to the first branch-

ing point at which the initial stability of the structure is lost.




Assuming then that Pl = l/Gl is the first critical load, we shall
set Po = Pl’ so that p =P - Pl' The critical principal coordinate

is thus u,, and at the branching point under consideration the associated
stability Zoefficient is zero, while the remaining stability coefficients

are all positive; that is to say, C; =0, while C >0 for s £ 1.

IV. INITTAL POST-BUCKLING PATH

We wish now to study the behavior of this structural system in the
vicinity of the first critical equilibrium state. That is to say, we
wish to obtain a first-order non-linear solution of the equilibrium equa-

tions av/aui = 0, that is correct in the immediate vicinity of this state.

4.1. Preliminary Analysis. In the region under consideration it is clear

that p and all the ui will be (vanishingly) small, and that along the
initial post-buckling path the critical principal coordinate, Uy will

be large in comparison with any other principal coordinate, ug» where
s # 1.

Thus since Cl is equal to zero, and since Gl(= l/Pl) is neces-

sarily non-zero, the equilibrium equation (8V/8u1?= O can be written in

the form
o _(L 1 + 1+8
w2 Py MYy T P W Yy et 5 (%)
1 Gl ul

Here and subsequently B is used to represent any expression that vanishes
in thelimit as p tends to zero, and the coefficients Elijk are under-

stood to arise from the first series of Eq. (3).

Further, since C,_ #0 for s # 1, the equilibrium equation

(BV/BuS) = O can be written in the form



1+ 8 (5)

for all s # 1.

4.2. 1Initial Slope. An expession for the initial slope of the post-

buckling path is readily derived.
Thus from Eq. (4) we can immediately write

p _ P

T m—— P

=0 Uy 2Gl

Iimit

so writing Dl = Dlll’ we have in all circumstances,
2 _ L (6)
uy Gl

Here and subsequently, it is to be understood that derivatives refer to

the post-buckling path at the branching point.

Since, in a mathematical sense, D, is "in general” non-zero, it is
seen that a "general" eigenvalue branching configuration will exhibit a
finite initial slope on a plot of the load against the critical principal
coordinate. Such a branching configuration is associated with an "exchange
of stabilities" (3)(4) as indicated by the two configurations of Fig. 2,

in which a stable path has been represented by a continuous curve, an unstable
path by a broken curve.

An Euler strut constrained laterally by a non-linear spring (5), and
certain rigid-jointed triangular frames (6) exhibit branching configura-

tions of this type.

.

L.3. 1Initial Curvature. When the initial slope is zero, interest

focuses on the initial curvature. We shall thus derive an expression for

the curvature under the condition that Dl = O.
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FIG.2 GENERAL EIGENVALUE BRANCHING
CONFIGURATIONS (D;#0)

FIG.3. NON-GENERAL EIGENVALUE BRANCHING
CONFIGURATIONS (D, =0)




From Eq. (5) we have

uS DS
1

for all s # 1, where D, =D,° Then substituting for u, in Eq. (4)
and setting D, = O we have finally

1
n
_(lg _ 2
u2 3 1 E: Ds/cs 2Gl *P
1 2

where El = Ellll' Thus in all circumstances for which the initial slope

is zero, we have

Fp (1 >,
;15 = |3 E ~ Z DS/CS Gy (7)
1 2

Denoting the right-hand side by T, we see that T can be either
positive or negative, giving the two "non-general" branching configura-
tions of Fig. 3.

When the curvature is positive, the rising paths are stable (3),
an example of this behavior being the unconstrained Euler strut. When
the curvature is negative the falling paths are unstable, and an example

of this behavior is provided by the axially loaded cylindrical panel (7).

L.oh. Symmetric System. In many problems of practical interest, the

structure and its loads are completely symmetric, so that in a symmetric
coordinate system the Taylor expansions for E and U will contain
no odd terms. The energy expansion of Eq. (3) will likewise contain no
odd terms, so the coefficients, D, ¥, ..., and H, J, ..., will be

identically zero. We shall now examine the initial post-buckling behavior

of such a symmetric system.

Since Dl is now identically zero, we see from the previous result,

which is of course still applicable, that the initial slope is zero.
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That is to say, (BP/aul) = 0, a result which is apparent from the assumed
symmetry. Morover, since all the D coefficients are identically zero,

we have from Eq. (7),

7P 1
— =z ) (8)
Bul 1

The third derivative is zero from the assumed symmetry, and we shall

proceed to evaluate the fourth derivative under the condition that the

curvature is zero.

When the system is symmetric, Eq. (5) reduceé to the form

o

ES
=z P
S

HFOJm

for s # 1, where E = E Then substituting for u_ in Eq. (4)

s s111°
and setting El = 0 gives finally,
n 2
—EBAP SL(le, 2V = (9)
e 5 711 C
aul 1 5 s

which is valid for a symmetric system when the initial curvature is zero.

Here G 1= G atter being understood to arise from the first

1 1111117 pe l
series of Eq. (3).

V. RAYLEIGH-RITZ SOLUTIONS

Iet us now examine the solutions that would be obtained for the
initial post-buckling path by the use of the Rayleigh-Ritz energy method.
It is assumed that the method is used in the context of an appropriate
non-linear energy formulation, and that the critical eigenfunction is
used as the assumed form, the amplitude of this function being the only

free parameter of the analysis.




The energy function, V(p,ui) of Eq. (3), is contained implicitly
within the non-linear energy formulation, and the assumed form corresponds

to the critical principal coordinate u The energy function of the

1
Rayleigh-Ritz analysis can thus be obtained by setting u, = 0O for s # 1
in Eq. (5), and the single equilibrium equation of the analysis can then

be obtained by setting (av/aul) = 0.

It follows jmmediately that the Rayleigh-Ritz post-buckling solution

is given by

(10)

from which the corresponding first-order solutions are readily derived.
These first-order solutions can in fact be obtained from the exact solu-
tions by equating to zero all energy coefficients containing a subscript

s, where s £ 1.

Since G, is necessarily non-zero, Eq. (10) indicates that p will

in all circumstances vanish with uy - As is well-known, the proposed

Rayleigh-Ritz analysis will thus yield the correct critical load.

The Rayleigh-Ritz solution for the initial slope is seen to be
Dl/2Gl, which agrees with the exact solution of Eq. (6). The Rayleigh-Ritz
procedure will thus yield the correct initial slope for the post-buckling

path in all circumstances.

When the initial slope is zero, the Rayleigh-Ritz procedure gives the
solution E1/5G1 for the initial curvature, which corresponds to the first
term of the exact solution of Eq. (7). Moreover, since we are considering
the first critical load for which C_ > 0 for s # 1, we see that the
second term of Eq. (7)

n D2

S
) &
5 s

can never be negative. Thus since Gl is necessarily positive, we see
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that, when the initial slope is zero, the Rayleigh-Ritz solution will

yield an upper bound for the initial curvature.

In a similar manner it is readily seen that for a symmetric system
the Rayleigh-Ritz procedure will always yield the correct initial curva-
ture, and that when the curvature is zero the procedure will yield

an upper bound for the fourth derivative.

VI. CONCLUSIONS

The results of the paper concerning .the Rayleigh-Ritz procedure can

be summarized in a formal manner as follows.

An elastic structure subjected to a single generalized conservative
load is considered. It is assumed that the behavior of the structure can
be described satisfactorily By a large but finite number of generalized
coordinates, and that with the use of these coordinates the structural
system yields a well-behaved eigenvalue problem lying within the general
formulation of section III. It is assumed that the critical loads of the
system are discreet, and attention is restricted to the first branching

point, at which the initial stability of the structure is lost.

As a special case, a symmetric system is considered, the structure
of which encounters identical conditions as it buckles in either of the
two possible directions. For such a system, assuming that the symmetry
is preserved by an appropriate choice of coordinates, the strain energy
and the deflection of the load will both be even functions of the coordin-
ates. The post-buckling paths will moreover be symmetric about the load

axis.

It is assumed that the linear eigenvalue problem has been solved
exactly, so that the linear buckling mode is known, and that an estimate
of the initial post-buckling behavior of the structural system is required.
For this estimate, the linear buckling mode can be used as the assumed

form in a non-linear Rayleigh-Ritz analysis.
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Restricting attention to the branching conditions on a plot of the
load against the amplitude of the linear buckling mode, the following

results have been established.

Theorem 1. The non-linear Rayleigh-Ritz analysis employing the
linear buckling mode will yield the correct initial slope for the post-

buckling path under all circumstances.

Theorem 2. When the initial slope is zero, the non-linear Rayleigh-
Ritz analysis employing the linear buckling mode will yield an upper bound
for the initial curvature of the post-buckling path.

Theorem 3. The non-linear Rayleigh-Ritz analysis employing the
linear buckling mode will yield the correct initial curvature for the

post-buckling path of a symmetric system.

Theorem 4. When the initial curvature is zero, the non-linear
Rayleigh-Ritz analysis employing the linear buckling mode will yield an
upper bound for the initial fourth derivative of the post-buckling path

of a symmetric system.
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